TOPIC 3: Limits and Continuity

A. LIMIT OF A FUNCTION

1. Definition of Limit

Intuitive Definition:

Let *f* be a function defined on an open interval (a, b) containing *c*, except possibly at *c* itself. If $f(x)$ gets arbitrarily close to a number *L* for all *x* sufficiently close to *c* (on either side of *c*) but not equal to *c*, then we say that *f* approaches the limit *L* as *x* approaches *c* , and we write

$$
\lim_{x \to c} f(x) = L \quad \text{or} \quad f(x) \to L \text{ as } x \to c.
$$

and say "the limit of $f(x)$, as *x* approaches *c*, equals *L*". (Sometimes, we even say in a shorter form: the limit of *f* at *c* is *L*.)

Example: Find the limit of $3x^2 - 1$ as *x* approaches 0.

Allin

As
$$
x \to 0
$$
, $f(x) \to -1$. So, $\lim_{x \to 0} (3x^2 - 1) = -1$

If no such number *L* exists, we say that *f* has no limit at *c* (i.e. $\lim_{x\to c} f(x)$ does not exist). Notice that the limit does not depend on how the function is defined at *c* . The limit may exist even if the value of *f* at *c* is not known or undefined.

Example:

Find the limit of $g(x)$ $\overline{\mathcal{L}}$ ∤ $\sqrt{ }$ = ≠ = $2, x = 2$ $x^2, x \neq 2$ *x* x^2, x $g(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0 \end{cases}$ and the limit of $\overline{\mathcal{L}}$ ∤ \int > ≤ = $3x, x > 2$ $, x \leq 2$ (x) 2 *xx* x^2, x $h(x) = \begin{cases} x^4, & x = 2 \\ 0, & x \end{cases}$, as *x* approaches 2. **Solution:**

Definition:

More formally, we say that the limit of $f(x)$ as x approaches *c* is L if for every number $\varepsilon > 0$ there is a corresponding number $\delta = \delta_{\varepsilon} > 0$ such that

$$
|f(x) - L| < \varepsilon \text{ whenever } 0 < |x - c| < \delta
$$

[*For our course, this formal definition will not be used*.]

2. Limit Laws

Suppose $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$. $x \rightarrow c$ \rightarrow → 1. Uniqueness: $\lim_{x \to c} f(x) = K$ implies $K = L$, i.e. a function has at most one limit at a particular number 2. Sum Rule: $\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L + M$ 3. Difference Rule: $\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = L - M$ 4. Product Rule: $\lim_{x \to c} [f(x)g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L \cdot M$ 5. Constant Multiple Rule: $\lim_{x \to c} kf(x) = k \cdot \lim_{x \to c} f(x) = k \cdot L$ for any $k \in R$ 6. Quotient Rule: *M L g x f x g x f x* $x \rightarrow c$ $x \rightarrow c$ $\lim_{x\to c}\frac{f(x)}{g(x)} = \frac{x\to c}{\lim g(x)} =$ \rightarrow \rightarrow $\rightarrow c$ $g(x)$ $\lim g(x)$ $\lim f(x)$ (x) $\lim_{x \to c} \frac{f(x)}{f(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} f(x)} = \frac{L}{L}$ provided $M \neq 0$ 7. Power Rule: $\lim_{x \to c} [f(x)]^n = L^n$, *n* a positive integer 8. Root Rule: $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{\frac{1}{n}}$ $\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{\frac{1}{n}}$, *n* a positive integer [If *n* is even, we assume that $\lim_{x \to c} f(x) = L > 0$]

(*Can you state the above rules verbally*?)

Some easy and useful limits:

d) $\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$, where *n* is a positive integer (and if *n* is even, we assume that $c > 0$)

We shall try to use the above rules and easy limits in the following examples.

Example:

Evaluate the following limits, if they exist.

a)
$$
\lim_{x \to 2} (x^2 - 4x + 1)
$$
 b) $\lim_{x \to 3} \frac{x - 2}{x + 2}$ c) $\lim_{x \to 2} \frac{x - 2}{x^2 - 4}$
d) $\lim_{x \to 3} \frac{x - 2}{x^2 - 4}$ e) $\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$ f) $\lim_{x \to 1} \frac{x - 1}{x^2 - 1}$
g) $\lim_{x \to 1} \frac{2x + 1}{4x^2 - 1}$ h) $\lim_{x \to -2} \sqrt{4x^2 - 3}$ i) $\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x}$
j) $\lim_{x \to 0} \frac{(4 + x)^2 - 16}{x}$ k) $\lim_{x \to 2} \sqrt{2x^2 - 3}$ l) $\lim_{x \to 1} (x^2 - 2)^{1/3}$

Solution:

Warning: *If the instruction requires you to show some steps, you must do so or else you would lose marks.*

a)
$$
\lim_{x \to 2} (x^2 - 4x + 1) = \lim_{x \to 2} x^2 - \lim_{x \to 2} 4x + \lim_{x \to 2} 1
$$

$$
= 2^2 - 4(2) + 1 = ... = -3
$$

$$
\lim_{x \to 2} x^2 = \lim_{x \to 2} x \cdot \lim_{x \to 2} x = 2 \cdot 2 = 4
$$

b)
$$
\lim_{x \to 3} (x - 2) = \lim_{x \to 3} x - \lim_{x \to 3} 2 = 3 - 2 = 1
$$

$$
\lim_{x \to 3} (x + 2) = \lim_{x \to 3} x + \lim_{x \to 3} 2 = 3 + 2 = 5 \neq 0
$$

$$
\lim_{x \to 3} \frac{x - 2}{x + 2} = \frac{\lim_{x \to 3} (x - 2)}{\lim_{x \to 3} (x + 2)} = \frac{1}{5}
$$

 $\overline{\mathcal{A}}$

Sometimes, when you feel confident that the quotient rule can be applied, you may write the steps as:

$$
\lim_{x \to 3} \frac{x-2}{x+2} = \frac{\lim_{x \to 3} (x-2)}{\lim_{x \to 3} (x+2)} = \frac{\lim_{x \to 3} x - \lim_{x \to 3} 2}{\lim_{x \to 3} x + \lim_{x \to 3} 2} = \frac{3-2}{3+2} = \frac{1}{5}
$$

(Sometimes one skips even more steps.)

A shorter way :
$$
\lim_{x \to 3} \frac{x-2}{x+2} = \frac{\lim_{x \to 3} (x-2)}{\lim_{x \to 3} (x+2)} = \frac{1}{5}
$$
 [This way shows only *one intermediate step*.]

A

The shortest way: 5 1 2 $\lim_{x\to 3}\frac{x-2}{x+2} =$ + − $\overline{\rightarrow}$ ³ \overline{x} *x x* [This way does not show any step at all; only the final answer is shown.]

Compare c) and d).

c)
$$
\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{2+2} = 4
$$

d)
$$
\lim_{x \to 3} \frac{x-2}{x^2 - 4} = \frac{\lim_{x \to 3} (x-2)}{\lim_{x \to 3} (x^2 - 4)} = \frac{3-2}{3^2 - 4} = \frac{1}{5}
$$

Compare with
$$
\lim_{x \to 3} \frac{x-2}{x^2-4} = \lim_{x \to 3} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 3} \frac{1}{x+2} = \frac{1}{3+2} = \frac{1}{5}
$$

e)

f)
$$
\lim_{x \to 1} \frac{x-1}{x^2-1}
$$
 (Why can't the quotient rule be applied?)

$$
\lim_{x \to 1} \frac{x-1}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)}{(x+1)(x-1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{\lim_{x \to 1} (x+1)} = \frac{1}{2}
$$

g)

h)
$$
\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{4(-2)^2 - 3} = \dots = \sqrt{13}
$$

i)
$$
\lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} = \lim_{x \to 0} \frac{\sqrt{x+1} - 1}{x} \cdot \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1}
$$

(*A critical step used*)

n.

$$
= \lim_{x \to 0} \frac{??}{x(\sqrt{x+1}+1)}
$$

\n
$$
= \lim_{x \to 0} \frac{??}{??} =
$$

\n
$$
\lim_{x \to 0} \frac{(4+x)^2 - 16}{x} = \lim_{x \to 0} \frac{16 + 8x + x^2 - 16}{x}
$$

\n
$$
= \lim_{x \to 0} \frac{??}{?} =
$$

\n
$$
= \lim_{x \to 0} (\qquad) =
$$

k)

l)

Direct Substitution Property

Limits of Polynomials

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n$ *n* $= a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ is a polynomial, then 0 1 $\lim_{n \to \infty} p(x) = p(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_n$ *n n* $\lim_{x \to c} p(x) = p(c) = a_n c^n + a_{n-1} c^{n-1} + \dots$ $\lim_{x \to c} p(x) = p(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

Limits of Rational Functions

If $p(x)$ and $q(x)$ are polynomials and $q(c) \neq 0$, then

$$
\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{\lim_{x \to c} p(x)}{\lim_{x \to c} q(x)} = \frac{p(c)}{q(c)}
$$

Example:
$$
p(x) = 4x^3 - 5x^2 + 3x - 4
$$

\n
$$
\lim_{x \to 2} (4x^3 - 5x^2 + 3x - 4) = 4(2)^3 - 5(2)^2 + 3(2) - 4 = 14
$$
, which is $p(2)$.
\n
$$
\lim_{x \to 2} p(x) = p(2)
$$

Examples:
$$
\frac{3x^3 - 5x^2 + 3x - 4}{\lim_{x \to 2} (2x - 1)} = 3 \neq 0
$$

\n
$$
\lim_{x \to 2} \frac{4x^3 - 5x^2 + 3x - 4}{2x - 1} = \frac{\lim_{x \to 2} (4x^3 - 5x^2 + 3x - 4)}{\lim_{x \to 2} (2x - 1)} = \frac{4(2)^3 - 5(2)^2 + 3(2) - 4}{2(2) - 1} = \frac{14}{3}
$$

\n**844**
$$
\frac{3x^3 - 5x^2 + 3x - 4}{2x - 1} = \frac{\lim_{x \to 2} (2x - 1)}{2x - 4} = ???
$$

\n**96**
$$
\lim_{x \to 2} (2x - 4) = 0
$$

\n**107**
$$
\lim_{x \to 2} (2x - 4) = 0
$$

\n**118**
$$
\lim_{x \to 2} \frac{x^2 - 4}{2x - 4} = ???
$$

\n**129**
$$
\lim_{x \to 2} \frac{x^2 - 4}{2x - 4} = ???
$$

Another useful limit

 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ $\rightarrow 0$ χ *x* $\lim_{x\to 0} \frac{\sin x}{x} = 1$

l

Reminder:

$$
\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians})
$$

 $x \rightarrow 2$

¹ The derivation of this limit can be found in Stewart's Calculus, Thomas' Calculus and also other textbooks.

Example:

Evaluate the following limits, if they exist.

a)
$$
\lim_{x \to 0} \frac{\sin x}{2x}
$$
 b) $\lim_{x \to 0} \frac{(x-2)\sin x}{3x}$

3. Sandwich Theorem (Also known as **Squeezing Theorem** or **Pinching Theorem**)

Sandwich Theorem

If $f(x) \le g(x) \le h(x)$ for all x in an interval containing a number a, except possibly at *a*, and $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, then

> $\lim g(x) = L$. $x \rightarrow a$

Example:

a) If $x - x^2 \le g(x) \le 4 - 3x$ for all *x*, find $\lim_{x \to 2} g(x)$.

b) Evaluate *x* $\lim_{x\to 0} x$ $\lim_{x\to 0} x^2 \sin \frac{1}{x}.$

Solution:

a) Since $\lim_{x \to 2} (x - x^2) = -2$ $\lim_{x\to 2}$ (*x* − *x*²) = −2, $\lim_{x\to 2}$ (4 − 3*x*) = −2, and $x - x^2 \le g(x) \le 4 - 3x$, by the Sandwich theorem, $\lim g(x) = -2$. $x \rightarrow 2$

b)
$$
-1 \le \sin \frac{1}{x} \le 1
$$
, for all x except $x = 0$. Hence
\n $-x^2 \le x^2 \sin \frac{1}{x} \le x^2$
\nSince $\lim_{x \to 0} (-x^2) = 0 = \lim_{x \to 0} x^2$, by the Sandwich theorem,
\n $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$.

A more general example

For any function, $\lim_{x \to c} |f(x)| = 0$ implies $\lim_{x \to c} f(x) = 0$ Since $-|f(x)| \le f(x) \le |f(x)|$ and $\lim_{x \to c} |f(x)| = \lim_{x \to c} |f(x)| = 0$, by the Sandwich theorem, $\lim_{x \to c} f(x) = 0$.

3. One-sided Limits

Let f be a function defined on an open interval (c,d) . If $f(x)$ gets arbitrarily close to a number *L* as *x* approaches *c* from within (c,d) , i.e. *x* approaches *c* from the right, then we say that f has a **right-hand limit** L at c , and we write

$$
\lim_{x \to c^+} f(x) = L \text{ or } f(x) \to L \text{ as } x \to c^+.
$$

Note that how $f(x)$ is defined for $x \leq c$ plays no role in this case.

" $x \rightarrow c^{\dagger}$ " means that we consider only values of *x* that are greater than *c*.

Similarly, if f is defined on an open interval (b, c) and gets arbitrarily close to a number *M* as *x* approaches *c* from within (b, c) , i.e. *x* approaches *c* from the left, then we say that f has a **left-hand limit** M at c , and we write

$$
\lim_{x \to c^-} f(x) = M \text{ or } f(x) \to M \text{ as } x \to c^-.
$$

As in the previous case, how $f(x)$ is defined for $x \ge c$ plays no role in this case.

" $x \rightarrow c^{-}$ " means that we consider only values of *x* that are greater than *c*.

Theorems:

- a) The Limit Laws and The Sandwich Theorem are also valid for one-sided limits if $x \rightarrow c$ is replaced by $x \rightarrow c^-$ or $x \rightarrow c^+$ respectively
- **b**) $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = L$. [*This would be very useful when dealing with piecewise-defined functions*,]

Example:

Determine if the limits exist.

(i)
$$
f(x) =\begin{cases} x+2, x \le 0 \\ x-1, x > 0 \end{cases}
$$
 a) $\lim_{x \to 0^{-}} f(x)$ b) $\lim_{x \to 0^{+}} f(x)$ c) $\lim_{x \to 0} f(x)$
\n(ii) $f(x) =\begin{cases} 5x-1, x < 4 \\ 4x+3, x \ge 4 \end{cases}$ a) $\lim_{x \to 4^{-}} f(x)$ b) $\lim_{x \to 4^{+}} f(x)$ c) $\lim_{x \to 4} f(x)$

Solution:

4 \rightarrow *x*

$$
\begin{aligned}\n\widetilde{\mathbb{E}} \left[\mathbb{E} f(x) \right] &= \begin{cases}\n x+2, & x \le 0 \\
 x-1, & x > 0\n \end{cases} \\
\lim_{x \to 0^{-}} f(x) &= \lim_{x \to 0^{-}} (x+2) = 2 \\
\text{b) } \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x-1) = -1 \\
\text{c) Since } \lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x), \lim_{x \to 0} f(x) \text{ does not exist.} \\
\lim_{x \to 0^{-}} f(x) &= \begin{cases}\n 5x-1, & x < 4 \\
 4x+3, & x \ge 4\n \end{cases} \\
\lim_{x \to 4^{+}} f(x) &= \lim_{x \to 4^{+}} (4x+3) = 16+3 = 19 \\
\text{d) } \lim_{x \to 4^{+}} f(x) &= \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} f(x).\n\end{aligned}
$$
\n
$$
\begin{aligned}\n\lim_{x \to 4^{+}} f(x) &= \lim_{x \to 4^{+}} (x) = \lim_{x \to 4^{+}} f(x).\n\end{aligned}
$$

For a real number x, $x \mid x$ is the largest integer less than or equal to x. For example, $\lfloor 2 \rfloor = 2, \lfloor 2.5 \rfloor = 2, \lfloor -2.5 \rfloor = -3.$ The function $f(x) = \lfloor x \rfloor$ is called the *floor* function.

For a real number *x*, $\lceil x \rceil$ is the smallest integer greater than or equal to *x*. For example, $\lceil 2 \rceil = 2$, $\lceil 2.5 \rceil = 3$, $\lceil -2.5 \rceil = -2$. The function $f(x) = \lceil x \rceil$ is called the *ceiling* function.

Example:

Evaluate each of the following limits, if it exists. If it does not exist, explain why.

a)
$$
\lim_{x \to 2} \frac{|x-2|}{x-2}
$$

\nb) $\lim_{x \to 2} [x]$
\nc) $\lim_{x \to 2} [x]$
\nSolution:
\na) $\lim_{x \to 2} \frac{|x-2|}{x-2}$
\n $\lim_{x \to 2} \frac{|x-2|}{x-2} = \lim_{x \to 2} \frac{-(x-2)}{x-2} = \lim_{x \to 2} (-1) = -1$
\n $\lim_{x \to 2} \frac{|x-2|}{x-2} = \lim_{x \to 2} \frac{x-2}{x-2} = \lim_{x \to 2} 1 = 1$
\n $\lim_{x \to 2} \frac{|x-2|}{x-2}$ does not exist. (Why?)
\nb) $\lim_{x \to 2} [x]$
\nFor $x < 2$ and near 2, $[x] = 1$. So $\lim_{x \to 2} [x] = \lim_{x \to 2} 1 = 1$
\nFor $x > 2$ and near 2, $[x] = 2$
\nSo $\lim_{x \to 2} [x] = \lim_{x \to 2} 2 = 2$
\nc) $\lim_{x \to 2} [x]$
\nFor $x < 2$ and near 2, $[x] = 2$. So $\lim_{x \to 2} [x] = \lim_{x \to 2} 2 = 2$
\nc) $\lim_{x \to 2} [x]$
\nFor $x < 2$ and near 2, $[x] = 2$. So $\lim_{x \to 2} [x] = \lim_{x \to 2} 2 = 2$
\nFor $x > 2$ and near 2, $[x] = 2$. So $\lim_{x \to 2} [x] = \lim_{x \to 2} 2 = 2$
\nFor $x > 2$ and near 2, $[x] = ?$. So $\lim_{x \to 2^+} [x] = ?$?

B. CONTINUITY

1. Continuity Test

For a function *f* that is defined at least on an open interval about a number *c* , we say that *f* is **continuous at** *c* if and only if

- 1. $f(c)$ exists (i.e., *the value of* $f(c)$ *is defined*; *this condition is not necessary for the existence of limit*);
- 2. $\lim_{x \to c} f(x)$ exists; and
- 3. $\lim_{x \to c} f(x) = f(c)$.

[Summarized: "limit of f at c equals $f(c)$ "]

If f is not continuous at c , we say that f is discontinuous at c . In this case, c is said to be a discontinuity of *f* .

When a function f is discontinuous at c , what sort of situation could occur?

Example:

Determine whether the following functions are continuous at $x = a$.

a)
$$
f(x) = 4x^3 + 2x + 1
$$
; $a = 0$
\nb) $f(x) = \frac{2x + 3}{3x - 2}$; $a = \frac{2}{3}$
\nc) $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$; $a = 0$
\nd) $f(x) = \frac{x^2 - x - 2}{x - 2}$; $a = 2$
\ne) $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x = 2 \\ 3 & \text{if } x = 2 \end{cases}$; $a = 2$
\n**Solution:**
\na) $f(x) = 4x^3 + 2x + 1$; $a = 0$
\nSince (i) $f(x)$ is defined at $x = 0$ with $f(0) = 1$,
\n(ii) $\lim_{x \to 0} f(x)$ exist with $\lim_{x \to 0} f(x) = 1$, and
\n(iii) $\lim_{x \to 0} f(x) = f(0)$,
\n $f(x) = 4x^3 + 2x + 1$ is continuous at $a = 0$.
\nb) $f(x) = \frac{2x + 3}{3x - 2}$; $a = \frac{2}{3}$ $f(\frac{2}{3})$ undefined.
\nc) $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ \frac{1}{x^2} & \text{if } x = 0 \end{cases}$ $f(0) = 1$ $[f(0)$ is defined]
\n $\begin{cases} \frac{1}{x} & \text{if } x = 0 \end{cases}$
\n $\lim_{x \to 0} \frac{1}{x^2}$ does not exist.
\n**Conclusion?**

d)
$$
f(x) = \frac{x^2 - x - 2}{x - 2}
$$
; $a = 2$ $f(2)$ undefined. **Conclusion?**

This function is not the same as $g(x) = x + 1$. Why???

e)
$$
f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2; \\ 3 & \text{if } x = 2. \end{cases}
$$
; $a = 2$

[This function is the same as $g(x) = x + 1$.Why???]

$$
f(2) = 3, \lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \dots = \lim_{x \to 2} (x + 1) = 3
$$

2. Continuity Rules

Theorem

If the functions *f* and *g* are continuous at *a* , then the following functions are continuous at *a*.

- 1 **Sum:**
- 2 Difference:
- 3 Product: $f \cdot g$
- 4 Constant Multiple: $c \cdot f$ for any $c \in R$
- 5 Quotient: *g* $\frac{f}{g}$ provided $g(a) \neq 0$

Theorems and Observations:

- 1. Any polynomial is continuous everywhere, i.e., it is continuous on $R = (-\infty, \infty)$.
- 2. The functions sin *x* and cos *x* are continuous at any number *c* .
- 3. The function tan *x* is continuous everywhere EXCEPT at $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{3\pi}{2}, \cdots$ 2 $+\frac{5}{4}$ 2 $+\frac{3}{4}$ 2 $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}$
- 4. $x - c$ *f x* −
— $(x) = \frac{1}{x}$ is continuous everywhere except at the number *c*. Indeed, $\lim_{x \to c} f(x)$ does not exist.
- 5. Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.
- 6. The following types of functions are continuous at every number in their domains: polynomials rational functions root functions trigonometric functions

Examples: On what intervals is each function continuous?

$$
f(x) = x^{2012} - 12x^{57} + 1900
$$
, $g(x) = \frac{x+1}{x^2 - 2x}$, $h(x) = \sqrt{x} + \frac{x}{x-2}$, $m(x) = \frac{\cos x}{3 + \sin x}$

3. Composite of Continuous Functions

Theorem:

If *f* is continuous at *a*, and *g* is continuous at $f(a)$, then the composite $g \circ f$ is continuous at *a* .

This theorem is often expressed informally by saying "a continuous function of a continuous function is a continuous function."

Example:

Determine whether the following functions are continuous.

a)
$$
h(x) = \cos(x^2)
$$

b) $k(x) = \frac{1}{\sqrt{x^2 + 9} - 5}$

Solution:

a) We have $h(x) = g(f(x))$, where

$$
f(x) = x^2
$$
 and $g(x) = \cos x$

Now *f* is continuous on *R* since it is a polynomial, and *g* is also continuous everywhere. Thus, $h = g \circ f$ is continuous on *R* by the above theorem.

b) Notice that *k* can be written as the composition of four functions:

$$
k = r \circ h \circ g \circ f \text{ or } k(x) = r(h(g(f(x))))
$$

where $r(x) = \frac{1}{x}$, $h(x) = x - 5$, $g(x) = \sqrt{x}$, $f(x) = x^2 + 9$ *x xr*

We know each of these functions is continuous on its domain, so by the above theorem, *k* is continuous on its domain, which is

$$
\{x \in R \mid \sqrt{x^2 + 9} \neq 5\} = \{x \mid x \neq \pm 4\} = (-\infty, -4) \cup (-4, 4) \cup (4, \infty)
$$

Example:

Find the following limits if they exist. (Here, try to make use of continuity of a function.) a) $\lim_{x \to 0} 5 \cos(x^2 - 9)$ 3 \rightarrow *x* b) $\lim 2\sin^2 x - 3$ \rightarrow $x \rightarrow \pi$

4. Continuity on an interval

Before discussing the continuity of a function on an interval, we need to discuss one-sided continuity.

Definition: Continuity from the left and right**(One-sided continuity)**

A function *f* is **continuous from the left at the point** *a* if the following conditions are satisfied:

- 1. $f(a)$ is defined.
- 2. $\lim f(x)$ exists. $x \rightarrow a$
- 3. $\lim f(x) = f(a)$ $x \rightarrow a^-$

Similar definition for

- *f* is **continuous from the right** at the point *a*

Definition: Continuity on an interval

- A function *f* is **continuous on the open interval** (*a*,*b*) if *f* is continuous at all points of the open interval (a,b) .
- A function *f* is **continuous on the closed interval** [a,b] if *f* is continuous on the open interval (*a*,*b*), continuous from the right at *a* and continuous from the left at *b*.
- "*f* is continuous on (−∞,∞) " means " *f* is continuous everywhere".

Example

$$
f(x) = \begin{cases} -x & \text{if } x < 0 \\ x & \text{if } 0 \le x \le 1 \\ x+1 & \text{if } x > 1 \end{cases}
$$

Find each of the following, or, if it does not exist, explain why. (a) $\lim_{x \to 0} f(x)$ (b) $\lim_{x \to 1} f(x)$ (c) $f(1)$ (d) $\lim f(x)$ $x \rightarrow 1^+$ Discuss continuity of *f* on intervals.

ER.

Example

Where are each of the following functions discontinuous?

(a)
$$
f(x) = \frac{x^2 - x - 2}{x - 2}
$$

\n(b) $g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2; \\ 2 & \text{if } x = 2. \end{cases}$
\n(c) $h(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x = 2; \\ 3 & \text{if } x = 2. \end{cases}$

Discuss continuity of the functions on intervals.

5. Intermediate Value Theorem for Continuous Functions

Suppose f is a continuous function on a closed interval $[a,b]$. If k is a number such that $f(a) < k < f(b)$ or $f(b) < k < f(a)$, then there is a number $c \in (a,b)$ with $f(c) = k$.

[*Note*: This theorem does not tell us what *c* is.]

Example:

Show that there is a root of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2. **Solution:**

Let $f(x) = 4x^3 - 6x^2 + 3x - 2$.

f is continuous on the closed interval [1, 2]. [*f* is continuous since it is a polynomial.]

$$
f(1) = 4 - 6 + 3 - 2 = -1 < 0
$$

\n $f(2) = 32 - 24 + 6 - 2 = 12 > 0$ Take $k = 0$ in the theorem.

Since $f(1) < 0 < f(2)$, [0 is a number between $f(1)$ and $f(2)$.] By the Intermediate Value Theorem, there is a number *c* between 1 and 2 such that $f(c) = 0$.

Therefore, the equation $4x^3 - 6x^2 + 3x - 2 = 0$ has at least one root *c* in the interval $(1, 2)$.

C. LIMITS INVOLVING INFINITY

1. Limits at Infinity and Horizontal Asymptotes

Definition: Limits at Infinity

We say that $f(x)$ has the limit *L* as *x* approaches infinity (∞) and write

$$
\lim_{x \to \infty} f(x) = L \text{ or } f(x) \to L \text{ as } x \to \infty
$$

if, as x moves further and further away from the origin in the positive direction, $f(x)$ gets arbitrarily close to *L* .

Analogously, we say that $f(x)$ has the limit *M* as *x* approaches minus infinity ($-\infty$) and write $\lim_{x \to \infty} f(x) = M$ or $f(x) \to M$ as $x \to -\infty$ −∞→

 if, as *x* moves further and further away from the origin in the negative direction, $f(x)$ gets arbitrarily close to *M*.

Definition

A line $y = L$ is a **horizontal asymptote** of the graph of a function $y = f(x)$ if either $\lim f(x) = L$ or $\lim f(x) = L$ *x* ∞→ *x* $\lim f(x) =$ −∞→

Example

Limit Laws

Example

(c)
$$
\lim_{x \to \infty} \frac{2x^2 + 5}{3x + 1}
$$

3

x

[**Note**: In (a) the numerator and the denominator of the rational function have the same degree; in (b) the degree of the numerator is less than the degree of the denominator. In example (c), the degree of the numerator is greater than the degree of the denominator; it will be discussed in the next subsection under infinite limits.]

3

x

−

3

x

l

−∞→

x

 $\overline{}$ J

3

x

−

→–∞ x→–∞

x → ∞ *x*

Example

Use the rules for limits at infinity to evaluate the following limits.

a) $5x - 4$ $\lim \frac{3x+2}{2}$ − + ∞→ *x x* $\lim_{x\to\infty} \frac{3x+2}{5x-4}$ b) $3x + 1$ $\lim_{x\to\infty} \frac{2x^2 + 8x + 6}{x^2 - 3x + 1}$ 2 $-3x +$ $+ 8x +$ $\rightarrow \infty$ *x*² − 3*x* $x^2 + 8x$ *x* **Solution:**

a)

$$
\lim_{x \to \infty} \frac{3x + 2}{5x - 4} = \lim_{x \to \infty} \frac{3 + \frac{2}{x}}{5 - \frac{4}{x}}
$$

$$
= \frac{\lim_{x \to \infty} \left(3 + \frac{2}{x}\right)}{\lim_{x \to \infty} \left(5 - \frac{4}{x}\right)} = \frac{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{2}{x}}{\lim_{x \to \infty} 5 - \lim_{x \to \infty} \frac{4}{x}}
$$

$$
= \frac{3 + 0}{5 - 0} = \frac{3}{5}
$$

2. Infinite Limits and Vertical Asymptotes

Example (a) Let's try to decide if $\lim_{x\to 0} \frac{1}{x^2}$ $\lim_{x\to 0} \frac{1}{x^2}$ exists.

As *x* approaches 0, x^2 also becomes close to 0 and $\frac{1}{x^2}$ *x* becomes very large; the values of 2 $(x) = \frac{1}{x}$ $f(x) = \frac{1}{x^2}$ do not approach a number. We conclude that $\lim_{x \to 0} \frac{1}{x^2}$ $\lim_{x\to 0} \frac{1}{x^2}$ does not exist.

However in this example, the values of $f(x) = \frac{1}{x^2}$ *x* $f(x) = \frac{1}{x^2}$ can be made arbitrarily large by taking *x* close enough to 0.

We write $\lim_{x\to 0} \frac{1}{x^2} = \infty$ $\lim_{x\to 0} \frac{1}{x^2} = \infty$ in addition to the information that " $\lim_{x\to 0} \frac{1}{x^2}$ $\lim_{x\to 0} \frac{1}{x^2}$ does not exist ".

Example (b) Consider $\overline{\mathcal{L}}$ \mathbf{I} ∤ \int = -1 if $x <$ > $=\frac{x}{1}$ = undefined if $x = 0$ 1 if $x < 0$ 1 if $x > 0$ $|x|$ (x) *x x x x* $s(x) = \frac{x}{x}$

y
\ny = 1
\n
$$
y = 1
$$

\n $y = -1$
\n $y = 1$
\n $y = -1$
\n $y = -1$
\n $y = -1$
\n $y = -1$
\n $y = 1$
\n $y = -1$
\nBut $\lim_{x \to 0^+} \frac{x}{|x|}$ $x \to 0^+$
\n $y = \infty$ [We cannot write this way.]

Definition of infinite limits

We say that $f(x)$ approaches infinity as *x* approaches *c*, and we write $\lim f(x) = \infty$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all *x* $0 < |x - c| < \delta \Rightarrow f(x) > B$

Analogously, we say that $f(x)$ approaches minus infinity as *x* approaches *c*, and we write

$$
\lim_{x \to c} f(x) = -\infty
$$

→ $x \rightarrow c$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all *x* $0 < |x - c| < \delta \Rightarrow f(x) < -B$

One-sided infinite limits like $\lim_{x \to c^+} f(x) = \infty$, $\lim_{x \to c^+} f(x) = -\infty$, $\lim_{x \to c^-} f(x) = \infty$ and

lim *f* (*x*) = −∞, are similarly defined by confining values of *x* to one side of *c*.

Infinite limits at infinity

There are also situations where $\lim f(x) = \infty$, $\lim f(x) = -\infty$, $\lim f(x) = \infty$ or ∞→ *x* ∞→ *x* −∞→ *x* $\lim_{x \to -\infty} f(x) = -\infty$,

Definition

A line $x = c$ is a **vertical asymptote** of the graph of a function $y = f(x)$ if

either $\lim_{x \to c^+} f(x) = \infty$ or $-\infty$ or $\lim_{x \to c^{-}} f(x) = \infty$ or $-\infty$

Remark: ∞ and $-\infty$ are not real numbers; they are symbols. Writing $\lim_{x\to c} f(x) = \infty$ or $\lim f(x) = -\infty$ does not mean that the limit exists, although these are given the names \rightarrow $x \rightarrow c$ infinite limits.

Example

$$
\lim_{x \to \infty} \frac{2x^2 + 5}{3x + 1} = \lim_{x \to \infty} \frac{(2x^2 + 5)/x}{(3x + 1)/x} = \lim_{x \to \infty} \frac{\frac{2x^2 + 5}{x}}{\frac{3x + 1}{x}} = \lim_{x \to \infty} \frac{2x + \frac{5}{x}}{3 + \frac{1}{x}} = \infty
$$

What about $3x + 1$ $\lim \frac{2x^2+5}{2}$ 2 + + −∞→ *x x* $\lim_{x\to-\infty}\frac{2x+1}{3x+1}$?

Example:

The following limits do not exist (as real numbers). Write each limit as ∞ or $-\infty$.

a)
$$
\lim_{x \to 3^{+}} \frac{-6}{x-3}
$$
 b) $\lim_{x \to 1} \frac{2}{(x-1)^{2}}$ c) $\lim_{x \to 2^{-}} \frac{-3}{x-2}$
d) $\lim_{x \to \infty} \frac{x^{2}-3}{2x-4}$ e) $\lim_{x \to 0} \frac{-1}{x^{2}(x+1)}$ f)

Solution:

a)

$$
\lim_{x\to 3^+}\frac{-6}{x-3}
$$

Since for $x > 3$, $(x-3) > 0$ and $\lim_{x \to 3^+} (x-3) = 0$ thus

$$
\lim_{x \to 3^+} \frac{-6}{x-3} = -\infty
$$

3. Horizontal and Vertical Asymptotes

Finding horizontal and vertical asymptotes of the graph of a rational function is quite easy. af

Example:

(i). Determine the horizontal asymptote(s) for the graph of each function defined below.

a)
$$
f(x) = \frac{2x+1}{x-4}
$$
 b) $f(x) = \frac{8x^2-1}{1+4x+6x^2}$

(ii) Determine the vertical asymptote(s) for the graph of each function defined below.

a)
$$
f(x) = \frac{-3}{x+2}
$$
 b) $f(x) = \frac{2}{1-x}$ c) $f(x) = \frac{1}{x^2 - 5x + 4}$

Solution:

(i) a)
$$
f(x) = \frac{2x+1}{x-4}
$$

\n
$$
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x+1}{x-4} = ... = 2
$$

Thus the horizontal asymptote is $y = 2$.

- (ii) For **vertical asymptote**: consider $\lim_{x \to c^+} f(x)$ and $\lim_{x \to c^-} f(x)$
- a) 2 $(x) = \frac{-3}{3}$ + − = *x f x* or $-\infty$??? 2 $\lim_{x \to -2^{-}} \frac{-3}{x+2} = \infty$ or $-\infty$ + − *x*→–2⁻ χ $\lim_{x \to \infty} \frac{3}{x} = \infty$ or $-\infty$??? 2 $\lim_{x \to -2^+} \frac{-3}{x+2} = \infty$ or $-\infty$ + − $x \rightarrow -2^+$ χ

Since $f(x) \to \infty$ as $x \to -2^-$ [or $f(x) \to -\infty$ as $x \to -2^+$], the vertical asymptote is $x = -2$.

(nby, Nov 2015)