TOPIC 3: Limits and Continuity

A. LIMIT OF A FUNCTION

1. Definition of Limit

Intuitive Definition:

Let f be a function defined on an open interval (a, b) containing c, except possibly at c itself. If f(x) gets arbitrarily close to a number L for all x sufficiently close to c (on either side of c) but not equal to c, then we say that f approaches the limit L as x approaches c, and we write

$$\lim f(x) = L$$
 or $f(x) \to L$ as $x \to c$.

and say "the limit of f(x), as x approaches c, equals L". (Sometimes, we even say in a shorter form: the limit of f at c is L.)

Example: Find the limit of $3x^2 - 1$ as x approaches 0.

		A	
X	f(x)	x	f(x)
-0.1	-0.97	0.1	-0.97
-0.01	-0.9997	0.01	-0.9997
-0.001	-0.999997	0.001	-0.999997
-0.0001	-0.99999997	0.0001	-0.99999997
	0357 V03		

As
$$x \to 0$$
, $f(x) \to -1$. So, $\lim_{x \to 0} (3x^2 - 1) = -1$

If no such number L exists, we say that f has no limit at c (i.e. $\lim_{x\to c} f(x)$ does not exist). Notice that the limit does not depend on how the function is defined at c. The limit may exist even if the value of f at c is not known or undefined.

Example:

Find the limit of $g(x) = \begin{cases} x^2, x \neq 2 \\ 2, x = 2 \end{cases}$ and the limit of $h(x) = \begin{cases} x^2, x \leq 2 \\ 3x, x > 2 \end{cases}$, as x approaches 2. Solution:

Definition:

More formally, we say that the limit of f(x) as x approaches c is L if for every number $\varepsilon > 0$ there is a corresponding number $\delta = \delta_{\varepsilon} > 0$ such that

 $|f(x) - L| < \varepsilon$ whenever $0 < |x - c| < \delta$

[For our course, this formal definition will not be used.]

2. Limit Laws

Suppose $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$.				
1.	Uniqueness:	$\lim_{x \to c} f(x) = K \text{ implies } K = L, \text{ i.e. a function has at}$		
	1 1	most one limit at a particular number		
2.	Sum Rule:	$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L + M$		
3.	Difference Rule:	$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = L - M$		
4.	Product Rule:	$\lim_{x \to c} [f(x)g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L \cdot M$		
5.	Constant Multiple Rule:	$\lim_{x \to c} kf(x) = k \cdot \lim_{x \to c} f(x) = k \cdot L \text{ for any } k \in R$		
6.	Quotient Rule:	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M} \text{ provided } M \neq 0$		
7.	Power Rule:	$\lim_{x \to c} [f(x)]^n = L^n, n \text{ a positive integer}$		
8.	Root Rule:	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{\frac{1}{n}}, n \text{ a positive integer}$		
	I	If <i>n</i> is even, we assume that $\lim_{x \to c} f(x) = L > 0$]		

(Can you state the above rules verbally?)

Some easy and useful limits:

a)	$\lim_{x \to c} a = a$
b)	$\lim_{x \to c} x = c$
c)	$\lim_{x\to c} x^n = c^n$, where <i>n</i> is a positive integer

d)
$$\lim_{x \to c} \sqrt[n]{x} = \sqrt[n]{c}$$
, where *n* is a positive integer

(and if *n* is even, we assume that c > 0)

We shall try to use the above rules and easy limits in the following examples.

Example:

Evaluate the following limits, if they exist.

a)
$$\lim_{x \to 2} (x^2 - 4x + 1)$$
 b)
$$\lim_{x \to 3} \frac{x - 2}{x + 2}$$
 c)
$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4}$$

d)
$$\lim_{x \to 3} \frac{x - 2}{x^2 - 4}$$
 e)
$$\lim_{x \to -2} \frac{x^3 + 2x^2 - 1}{5 - 3x}$$
 f)
$$\lim_{x \to 1} \frac{x - 1}{x^2 - 1}$$

g)
$$\lim_{x \to 1} \frac{2x + 1}{4x^2 - 1}$$
 h)
$$\lim_{x \to -2} \sqrt{4x^2 - 3}$$
 i)
$$\lim_{x \to 0} \frac{\sqrt{x + 1} - 1}{x}$$

j)
$$\lim_{x \to 0} \frac{(4 + x)^2 - 16}{x}$$
 k)
$$\lim_{x \to 2} \sqrt{2x^2 - 3}$$
 l)
$$\lim_{x \to 1} (x^2 - 2)^{1/3}$$

Solution:

<u>Warning</u>: If the instruction requires you to show some steps, you must do so or else you would lose marks.

a)
$$\lim_{x \to 2} (x^2 - 4x + 1) = \lim_{x \to 2} x^2 - \lim_{x \to 2} 4x + \lim_{x \to 2} 1$$
$$= 2^2 - 4(2) + 1 = \dots = -3$$
$$[\lim_{x \to 2} x^2 = \lim_{x \to 2} x \cdot \lim_{x \to 2} x = 2 \cdot 2 = 4]$$

b)
$$\lim_{x \to 3} (x-2) = \lim_{x \to 3} x - \lim_{x \to 3} 2 = 3 - 2 = 1$$
$$\lim_{x \to 3} (x+2) = \lim_{x \to 3} x + \lim_{x \to 3} 2 = 3 + 2 = 5 \neq 0$$
$$\lim_{x \to 3} \frac{x-2}{x+2} = \frac{\lim_{x \to 3} (x-2)}{\lim_{x \to 3} (x+2)} = \frac{1}{5}$$

Sometimes, when you feel confident that the quotient rule can be applied, you may write the steps as:

$$\lim_{x \to 3} \frac{x-2}{x+2} = \lim_{x \to 3} (x-2) = \lim_{x \to 3} \frac{1}{x \to 3} \frac{x-1}{x \to 3} = \frac{3-2}{3+2} = \frac{1}{5}$$

(Sometimes one skips even more steps.)

A shorter way :
$$\lim_{x \to 3} \frac{x-2}{x+2} = \frac{\lim_{x \to 3} (x-2)}{\lim_{x \to 3} (x+2)} = \frac{1}{5}$$
 [This way shows only *one intermediate step*.]

The shortest way: $\lim_{x \to 3} \frac{x-2}{x+2} = \frac{1}{5}$ [This way does not show any step at all; only the final answer is shown.]

Compare c) and d).

c)
$$\lim_{x \to 2} \frac{x-2}{x^2-4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{2+2} = 4$$

d) $\lim_{x \to 3} \frac{x-2}{x^2 - 4} = \frac{\lim_{x \to 3} (x-2)}{\lim_{x \to 3} (x^2 - 4)} = \frac{3-2}{3^2 - 4} = \frac{1}{5}$ Compare with $\lim_{x \to 3} \frac{x-2}{x^2 - 4} = \lim_{x \to 3} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 3} \frac{1}{x+2} = \frac{1}{3+2} = \frac{1}{5}$

e)

f) $\lim_{x \to 1} \frac{x-1}{x^2-1}$ (Why can't the quotient rule be applied?)

$$\lim_{x \to 1} \frac{x-1}{x^2 - 1} = \lim_{x \to 1} \frac{(x-1)}{(x+1)(x-1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{\lim_{x \to 1} (x+1)} = \frac{1}{2}$$

g)

h)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{4(-2)^2 - 3} = \dots = \sqrt{13}$$

i)
$$\lim_{x \to 0} \frac{\sqrt{x+1}-1}{x} = \lim_{x \to 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1}$$

(A critical step used)

$$= \lim_{x \to 0} \frac{???}{x(\sqrt{x+1}+1)}$$

$$= \lim_{x \to 0} \frac{???}{???} =$$

$$\lim_{x \to 0} \frac{(4+x)^2 - 16}{x} = \lim_{x \to 0} \frac{16 + 8x + x^2 - 16}{x}$$

$$= \lim_{x \to 0} \frac{??}{??}$$

$$= \lim_{x \to 0} \frac{??}{??}$$

k)

1)

Direct Substitution Property

Limits of Polynomials

If $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ is a polynomial, then $\lim_{x \to c} p(x) = p(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_0.$

Limits of Rational Functions

If p(x) and q(x) are polynomials and $q(c) \neq 0$, then

$$\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{\lim_{x \to c} p(x)}{\lim_{x \to c} q(x)} = \frac{p(c)}{q(c)}$$

Example:
$$p(x) = 4x^3 - 5x^2 + 3x - 4$$

$$\lim_{x \to 2} (4x^3 - 5x^2 + 3x - 4) = 4(2)^3 - 5(2)^2 + 3(2) - 4 = 14, \text{ which is } p(2).$$

$$\lim_{x \to 2} p(x) = p(2)$$

Examples: 'Good case'

$$\lim_{x \to 2} \frac{4x^3 - 5x^2 + 3x - 4}{2x - 1} = ???.$$

$$\lim_{x \to 2} (2x - 1) = 3 \neq 0$$

$$\lim_{x \to 2} \frac{4x^3 - 5x^2 + 3x - 4}{2x - 1} = \frac{\lim_{x \to 2} (4x^3 - 5x^2 + 3x - 4)}{\lim_{x \to 2} (2x - 1)} = \frac{4(2)^3 - 5(2)^2 + 3(2) - 4}{2(2) - 1} = \frac{14}{3}$$
'Bad cases' (i)
$$\lim_{x \to 2} \frac{4x^3 - 5x^2 + 3x - 4}{2x - 4} = ???$$

$$\lim_{x \to 2} (2x - 4) = 0$$
(ii)
$$\lim_{x \to 2} \frac{x^2 - 4}{2x - 4} = ???$$

Another useful limit

 $\lim_{x \to 0} \frac{\sin x}{x} = 1 \quad (\text{see note } 1)$

Reminder:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad (\theta \text{ in radians})$$

¹ The derivation of this limit can be found in Stewart's Calculus, Thomas' Calculus and also other textbooks.

Example:

Evaluate the following limits, if they exist.

a) $\lim_{x\to 0} \frac{\sin x}{2x}$ b) $\lim_{x\to 0} \frac{(x-2)\sin x}{3x}$

3. Sandwich Theorem (Also known as Squeezing Theorem or Pinching Theorem)

Sandwich Theorem

If $f(x) \le g(x) \le h(x)$ for all x in an interval containing a number a, except possibly at a, and $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$, then

 $\lim_{x\to a}g(x)=L.$

Example:

a) If
$$x - x^2 \le g(x) \le 4 - 3x$$
 for all x, find $\lim g(x)$.

b) Evaluate $\lim_{x\to 0} x^2 \sin \frac{1}{x}$.

Solution:

a) Since $\lim_{x \to 2} (x - x^2) = -2$, $\lim_{x \to 2} (4 - 3x) = -2$, and $x - x^2 \le g(x) \le 4 - 3x$, by the Sandwich theorem, $\lim_{x \to 2} g(x) = -2$.

b)
$$-1 \le \sin \frac{1}{x} \le 1$$
, for all x except $x = 0$. Hence
 $-x^2 \le x^2 \sin \frac{1}{x} \le x^2$
Since $\lim_{x \to 0} (-x^2) = 0 = \lim_{x \to 0} x^2$, by the Sandwich theorem,
 $\lim_{x \to 0} x^2 \sin \frac{1}{x} = 0$.

A more general example

For any function, $\lim_{x\to c} |f(x)| = 0$ implies $\lim_{x\to c} f(x) = 0$ Since $-|f(x)| \le f(x) \le |f(x)|$ and $\lim_{x\to c} -|f(x)| = \lim_{x\to c} |f(x)| = 0$, by the Sandwich theorem, $\lim_{x\to c} f(x) = 0$.

3. One-sided Limits

Let f be a function defined on an open interval (c,d). If f(x) gets arbitrarily close to a number L as x approaches c from within (c,d), i.e. x approaches c from the right, then we say that f has a **right-hand limit** L at c, and we write

$$\lim_{x \to c^+} f(x) = L \text{ or } f(x) \to L \text{ as } x \to c^+.$$

Note that how f(x) is defined for $x \le c$ plays no role in this case.

" $x \rightarrow c^+$ " means that we consider only values of x that are greater than c.

Similarly, if f is defined on an open interval (b, c) and gets arbitrarily close to a number M as x approaches c from within (b, c), i.e. x approaches c from the left, then we say that f has a **left-hand limit** M at c, and we write

$$\lim_{x \to c^-} f(x) = M \text{ or } f(x) \to M \text{ as } x \to c^-$$

As in the previous case, how f(x) is defined for $x \ge c$ plays no role in this case.

" $x \rightarrow c^{-}$ " means that we consider only values of x that are greater than c.

Theorems:

- a) The Limit Laws and The Sandwich Theorem are also valid for one-sided limits if $x \rightarrow c$ is replaced by $x \rightarrow c^{-}$ or $x \rightarrow c^{+}$ respectively
- b) $\lim_{x \to c} f(x) = L$ if and only if $\lim_{x \to c^-} f(x) = \lim_{x \to c^+} f(x) = L$. [*This would be very useful when dealing with piecewise-defined functions*,]

Example:

Determine if the limits exist.

(i)
$$f(x) = \begin{cases} x+2, x \le 0 \\ x-1, x > 0 \end{cases}$$
 a) $\lim_{x \to 0^{-}} f(x)$ b) $\lim_{x \to 0^{+}} f(x)$ c) $\lim_{x \to 0} f(x)$
(ii) $f(x) = \begin{cases} 5x-1, x < 4 \\ 4x+3, x \ge 4 \end{cases}$ a) $\lim_{x \to 4^{-}} f(x)$ b) $\lim_{x \to 4^{+}} f(x)$ c) $\lim_{x \to 4} f(x)$

Solution:

For a real number x, $\lfloor x \rfloor$ is the largest integer less than or equal to x. For example, $\lfloor 2 \rfloor = 2, \lfloor 2.5 \rfloor = 2, \lfloor -2.5 \rfloor = -3$. The function $f(x) = \lfloor x \rfloor$ is called the *floor* function.

For a real number x, $\lceil x \rceil$ is the smallest integer greater than or equal to x. For example, $\lceil 2 \rceil = 2, \lceil 2.5 \rceil = 3, \lceil -2.5 \rceil = -2$. The function $f(x) = \lceil x \rceil$ is called the *ceiling* function.

Example:

Evaluate each of the following limits, if it exists. If it does not exist, explain why.

a)
$$\lim_{x \to 2} \frac{|x-2|}{|x-2|}$$
 b) $\lim_{x \to 2} [x]$ c) $\lim_{x \to 2} [x]$
Solution:
a) $\lim_{x \to 2} \frac{|x-2|}{|x-2|}$ $|x-2| = \begin{cases} -(x-2), & \text{if } x < 2 \\ |x-2| = \begin{cases} -(x-2), & \text{if } x < 2 \\ |x-2|, & \text{if } x \ge 2 \end{cases}$
 $\lim_{x \to 2^{-}} \frac{|x-2|}{|x-2|} = \lim_{x \to 2^{-}} \frac{-(x-2)}{|x-2|} = \lim_{x \to 2^{-}} (-1) = -1$
 $\lim_{x \to 2^{+}} \frac{|x-2|}{|x-2|} = \lim_{x \to 2^{+}} \frac{x-2}{|x-2|} = \lim_{x \to 2^{+}} 1 = 1$
 $\lim_{x \to 2^{-}} \frac{|x-2|}{|x-2|}$ does not exist. (Why?)
b) $\lim_{x \to 2} [x]$
For $x < 2$ and near 2, $[x] = 1$. So $\lim_{x \to 2^{-}} [x] = \lim_{x \to 2^{-}} 1 = 1$
For $x > 2$ and near 2, $[x] = 2$ So $\lim_{x \to 2^{-}} [x] = \lim_{x \to 2^{-}} 2 = 2$
c) $\lim_{x \to 2} [x]$
For $x < 2$ and near 2, $[x] = 2$. So $\lim_{x \to 2^{-}} [x] = \lim_{x \to 2^{-}} 2 = 2$
For $x > 2$ and near 2, $[x] = 2$. So $\lim_{x \to 2^{-}} [x] = \lim_{x \to 2^{-}} 2 = 2$
For $x > 2$ and near 2, $[x] = 2$. So $\lim_{x \to 2^{-}} [x] = \lim_{x \to 2^{-}} 2 = 2$

B. CONTINUITY

1. Continuity Test

For a function f that is defined at least on an open interval about a number c, we say that f is **continuous at** c if and only if

- 1. f(c) exists (i.e., the value of f(c) is defined; this condition is not necessary for the existence of limit);
- 2. $\lim_{x \to \infty} f(x)$ exists; and
- 3. $\lim f(x) = f(c).$

[Summarized: "limit of f at c equals f(c) "]

If f is not continuous at c, we say that f is discontinuous at c. In this case, c is said to be a discontinuity of f.

When a function f is discontinuous at c, what sort of situation could occur?

Example:

Determine whether the following functions are continuous at x = a.

a)
$$f(x) = 4x^3 + 2x + 1; a = 0$$

b) $f(x) = \frac{2x + 3}{3x - 2}; a = \frac{2}{3}$
c) $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$
d) $f(x) = \frac{x^2 - x - 2}{x - 2}; a = 2$
e) $f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2; \\ 3 & \text{if } x = 2. \end{cases}$
Solution:
a) $f(x) = 4x^3 + 2x + 1; a = 0$
Since (i) $f(x)$ is defined at $x = 0$ with $f(0) = 1$,
(ii) $\lim_{x \to 0} f(x) = x + 1$ is continuous at $a = 0$.
b) $f(x) = \frac{2x + 3}{3x - 2}; a = \frac{2}{3}$ $f(\frac{2}{3})$ undefined. Conclusion?
c) $f(x) = \begin{cases} \frac{1}{x^2} & \text{if } x \neq 0; \\ 1 & \text{if } x = 0 \end{cases}$
 $\lim_{x \to 0} \frac{1}{x^2}$ does not exist. Conclusion?

d)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
; $a = 2$ $f(2)$ undefined. Conclusion

This function is not the same as g(x) = x + 1. Why???

e)
$$f(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2; \\ 3 & \text{if } x = 2. \end{cases}$$
; $a = 2$

[This function is the same as g(x) = x + 1. Why???]

$$f(2) = 3$$
, $\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - x - 2}{x - 2} = \dots = \lim_{x \to 2} (x + 1) = 3$

2. Continuity Rules

Theorem

If the functions f and g are continuous at a, then the following functions are continuous at a.

1Sum:f + g2Difference:f - g3Product: $f \cdot g$ 4Constant Multiple: $c \cdot f$ for any $c \in R$ 5Quotient: $\frac{f}{a}$ provided $g(a) \neq 0$

Theorems and Observations:

- 1. Any polynomial is continuous everywhere, i.e., it is continuous on $R = (-\infty, \infty)$.
- 2. The functions $\sin x$ and $\cos x$ are continuous at any number c.
- 3. The function tan x is continuous everywhere EXCEPT at $\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \cdots$
- 4. $f(x) = \frac{1}{x-c}$ is continuous everywhere except at the number c. Indeed, $\lim f(x)$ does not exist.
- 5. Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.
- 6. The following types of functions are continuous at every number in their domains: polynomials rational functions root functions trigonometric functions

Examples: On what intervals is each function continuous?

$$f(x) = x^{2012} - 12x^{57} + 1900, \ g(x) = \frac{x+1}{x^2 - 2x}, \ h(x) = \sqrt{x} + \frac{x}{x-2}, \ m(x) = \frac{\cos x}{3 + \sin x}$$

3. Composite of Continuous Functions

Theorem:

If f is continuous at a, and g is continuous at f(a), then the composite $g \circ f$ is continuous at a.

This theorem is often expressed informally by saying "a continuous function of a continuous function is a continuous function."

Example:

Determine whether the following functions are continuous.

a)
$$h(x) = \cos(x^2)$$
 b) $k(x) = \frac{1}{\sqrt{x^2 + 9} - 5}$

Solution:

a) We have h(x) = g(f(x)), where

$$f(x) = x^2$$
 and $g(x) = \cos x$

Now *f* is continuous on *R* since it is a polynomial, and *g* is also continuous everywhere. Thus, $h = g \circ f$ is continuous on *R* by the above theorem.

b) Notice that *k* can be written as the composition of four functions:

$$k = r \circ h \circ g \circ f$$
 or $k(x) = r(h(g(f(x))))$

where $r(x) = \frac{1}{x}$, h(x) = x - 5, $g(x) = \sqrt{x}$, $f(x) = x^2 + 9$

We know each of these functions is continuous on its domain, so by the above theorem, k is continuous on its domain, which is

$$\{x \in R \mid \sqrt{x^2 + 9} \neq 5\} = \{x \mid x \neq \pm 4\} = (-\infty, -4) \cup (-4, 4) \cup (4, \infty)$$

Example:

Find the following limits if they exist. (Here, try to make use of continuity of a function.) a) $\lim_{x \to 0} 5\cos(x^2 - 9)$ b) $\lim_{x \to 0} 2\sin^2 x - 3$

4. Continuity on an interval

Before discussing the continuity of a function on an interval, we need to discuss one-sided continuity.

Definition: <u>Continuity from the left and right (One-sided continuity)</u>

A function f is **continuous from the left at the point** a if the following conditions are satisfied:

- 1. f(a) is defined.
- 2. $\lim_{x \to \infty} f(x)$ exists.
- 3. $\lim_{x \to a^-} f(x) = f(a)$

Similar definition for

- f is continuous from the right at the point a

Definition: Continuity on an interval

- A function f is continuous on the open interval (a,b) if f is continuous at all points of the open interval (a,b).
- A function f is **continuous on the closed interval** [a,b] if f is continuous on the open interval (a,b), continuous from the right at a and continuous from the left at b.
- " \hat{f} is continuous on $(-\infty,\infty)$ " means "f is continuous everywhere".

Example

$$f(x) = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } 0 \le x \le 1\\ x+1 & \text{if } x > 1 \end{cases}$$

Find each of the following, or, if it does not exist, explain why. (a) $\lim_{x\to 0} f(x)$ (b) $\lim_{x\to 1} f(x)$ (c) f(1) (d) $\lim_{x\to 1^+} f(x)$ Discuss continuity of f on intervals.

Example

Where are each of the following functions discontinuous?

(a)
$$f(x) = \frac{x^2 - x - 2}{x - 2}$$
 (b) $g(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2; \\ 2 & \text{if } x = 2. \end{cases}$
(c) $h(x) = \begin{cases} \frac{x^2 - x - 2}{x - 2} & \text{if } x \neq 2; \\ 3 & \text{if } x = 2. \end{cases}$

Discuss continuity of the functions on intervals.

5. Intermediate Value Theorem for Continuous Functions

Example:

Show that there is a root of the equation $4x^3 - 6x^2 + 3x - 2 = 0$ between 1 and 2. Solution:

Let $f(x) = 4x^3 - 6x^2 + 3x - 2$.

f is continuous on the closed interval [1, 2].

[*f* is continuous since it is a polynomial.]

$$f(1) = 4 - 6 + 3 - 2 = -1 < 0$$

$$f(2) = 32 - 24 + 6 - 2 = 12 > 0$$
 Take $k = 0$ in the theorem

Since f(1) < 0 < f(2), [0 is a number between f(1) and f(2).] By the Intermediate Value Theorem, there is a number c between 1 and 2 such that f(c) = 0.

Therefore, the equation $4x^3 - 6x^2 + 3x - 2 = 0$ has at least one root c in the interval (1, 2).

C. LIMITS INVOLVING INFINITY

1. Limits at Infinity and Horizontal Asymptotes

Definition: Limits at Infinity

We say that f(x) has the limit L as x approaches infinity (∞) and write

$$\lim f(x) = L \text{ or } f(x) \to L \text{ as } x \to \infty$$

if, as x moves further and further away from the origin in the positive direction, f(x) gets arbitrarily close to L.

Analogously, we say that f(x) has the limit M as x approaches minus infinity $(-\infty)$ and write $\lim f(x) = M$ or $f(x) \to M$ as $x \to -\infty$

if, as x moves further and further away from the origin in the negative direction, f(x) gets arbitrarily close to M.

Definition

A line y = L is a **horizontal asymptote** of the graph of a function y = f(x) if either

 $\lim_{x \to \infty} f(x) = L \quad \text{or} \qquad \lim_{x \to -\infty} f(x) = L$

Example

Limit Laws

Suppose $\lim_{x \to c} f(x) = L$	and $\lim_{x\to c} g(x) = M$, and $\lim_{x\to c}$ means $\lim_{x\to\infty}$ or $\lim_{x\to\infty}$.	
1. Uniqueness:	$\lim_{x \to c} f(x) = K$ implies $K = L$, i.e. a function has at	
	most one limit as $x \to \infty$ (or as $x \to -\infty$).	
2. Sum Rule:	$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = L + M$	
3. Difference Rule:	$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x) = L - M$	
4. Product Rule:	$\lim_{x \to c} f(x)g(x) = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = L \cdot M$	
5. Constant Multiple Rule: $\lim_{x \to c} kf(x) = k \cdot \lim_{x \to c} f(x) = k \cdot L \text{ for any } k \in \mathbb{R}$		
6. Quotient Rule:	$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M} \text{ provided } M \neq 0$	
7. Power Rule:	$\lim_{x \to c} [f(x)]^n = L^n, n \text{ a positive integer}$	
8. Root Rule:	$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{L} = L^{\frac{1}{n}}, n \text{ a positive integer}$	
	[If <i>n</i> is even, we assume that $\lim_{x \to c} f(x) = L > 0$]	

Example

(a) When x becomes large, both the numerator and the denominator of $\frac{3x^2 - x - 2}{5x^2 + 4x + 1}$ become large, so it is not obvious what happens to the ratio. $\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \lim_{x \to \infty} \frac{3x^2 - x - 2}{\frac{x^2}{5x^2 + 4x + 1}} = \lim_{x \to \infty} \frac{3 - \frac{1}{x} - \frac{2}{x^2}}{5 + \frac{4}{x} + \frac{1}{x^2}}$ $= \frac{\lim_{x \to \infty} \left(3 - \frac{1}{x} - \frac{2}{x^2}\right)}{\lim_{x \to \infty} \left(5 + \frac{4}{x} + \frac{1}{x^2}\right)} = \frac{\lim_{x \to \infty} 3 - \lim_{x \to \infty} \frac{1}{x} - \lim_{x \to \infty} \frac{2}{x^2}}{\lim_{x \to \infty} 5 + \lim_{x \to \infty} \frac{4}{x} + \lim_{x \to \infty} \frac{1}{x^2}} = \frac{3 - 0 - 0}{5 + 0 + 0} = \frac{3}{5}$ $y = \frac{3}{5}$ is a horizontal asymptote of the curve $y = \frac{3x^2 - x - 2}{5x^2 + 4x + 1}$.

(b)

$$\lim_{x \to \infty} \frac{3x+2}{5x^3-4} = \lim_{x \to \infty} \frac{\frac{3x+2}{x^3}}{\frac{5x^3-4}{x^3}} = \lim_{x \to \infty} \frac{\frac{3}{x^2} + \frac{2}{x^3}}{5-\frac{4}{x^3}} = \frac{\lim_{x \to \infty} \left(\frac{3}{x^2} + \frac{2}{x^3}\right)}{\lim_{x \to \infty} \left(5-\frac{4}{x^3}\right)} = \frac{\lim_{x \to \infty} \frac{3}{x^2} + \lim_{x \to \infty} \frac{2}{x^3}}{\lim_{x \to \infty} 5 - \lim_{x \to \infty} \frac{4}{x^3}} = \frac{0+0}{5-0} = 0$$
(c) $\lim_{x \to \infty} \frac{2x^2+5}{3x+1}$

[<u>Note</u>: In (a) the numerator and the denominator of the rational function have the same degree; in (b) the degree of the numerator is less than the degree of the denominator. In example (c), the degree of the numerator is greater than the degree of the denominator; it will be discussed in the next subsection under infinite limits.]

Example

Use the rules for limits at infinity to evaluate the following limits.

a) $\lim_{x \to \infty} \frac{3x+2}{5x-4}$ b) $\lim_{x \to \infty} \frac{2x^2+8x+6}{x^2-3x+1}$ **Solution:** $\lim_{x \to \infty} \frac{3x+2}{5x-4} = \lim_{x \to \infty} \frac{3+\frac{2}{x}}{4}$

a)

$$= \frac{\lim_{x \to \infty} \left(3 + \frac{2}{x}\right)}{\lim_{x \to \infty} \left(5 - \frac{4}{x}\right)} = \frac{\lim_{x \to \infty} 3 + \lim_{x \to \infty} \frac{2}{x}}{\lim_{x \to \infty} 5 - \lim_{x \to \infty} \frac{4}{x}}$$
$$= \frac{3 + 0}{5 - 0} = \frac{3}{5}$$

2. Infinite Limits and Vertical Asymptotes

Example (a) Let's try to decide if $\lim_{x\to 0} \frac{1}{x^2}$ exists.

As x approaches 0, x^2 also becomes close to 0 and $\frac{1}{x^2}$ becomes very large; the values of $f(x) = \frac{1}{x^2}$ do not approach a number. We conclude that $\lim_{x \to 0} \frac{1}{x^2}$ does not exist.

However in this example, the values of $f(x) = \frac{1}{x^2}$ can be made arbitrarily large by taking x close enough to 0.

We write $\lim_{x\to 0} \frac{1}{x^2} = \infty$ in addition to the information that " $\lim_{x\to 0} \frac{1}{x^2}$ does not exist ".

Example (b) Consider $s(x) = \frac{x}{|x|} = \begin{cases} 1 & \text{if } x > 0 \\ -1 & \text{if } x < 0 \\ \text{undefined} & \text{if } x = 0 \end{cases}$

Definition of infinite limits

We say that f(x) approaches infinity as x approaches c, and we write $\lim f(x) = \infty$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all x $0 < |x - c| < \delta \Rightarrow f(x) > B$

Analogously, we say that f(x) approaches minus infinity as x approaches c, and we write

$$\lim f(x) = -\infty$$

if for every positive real number *B* there exists a corresponding $\delta > 0$ such that for all x $0 < |x-c| < \delta \Rightarrow f(x) < -B$

One-sided infinite limits like $\lim_{x \to c^+} f(x) = \infty$, $\lim_{x \to c^+} f(x) = -\infty$, $\lim_{x \to c^-} f(x) = \infty$ and

 $\lim_{x \to \infty} f(x) = -\infty$, are similarly defined by confining values of x to one side of c.

Infinite limits at infinity

There are also situations where $\lim_{x\to\infty} f(x) = \infty$, $\lim_{x\to\infty} f(x) = -\infty$, $\lim_{x\to\infty} f(x) = \infty$ or $\lim_{x\to\infty} f(x) = -\infty$,

Definition

A line x = c is a **vertical asymptote** of the graph of a function y = f(x) if

either $\lim_{x \to c^+} f(x) = \infty$ or $-\infty$ or $\lim_{x \to c^-} f(x) = \infty$ or $-\infty$

<u>**Remark**</u>: ∞ and $-\infty$ are not real numbers; they are symbols. Writing $\lim_{x \to c} f(x) = \infty$ or $\lim_{x \to c} f(x) = -\infty$ does not mean that the limit exists, although these are given the names infinite limits.

Example

$$\lim_{x \to \infty} \frac{2x^2 + 5}{3x + 1} = \lim_{x \to \infty} \frac{(2x^2 + 5)/x}{(3x + 1)/x} = \lim_{x \to \infty} \frac{\frac{2x^2 + 5}{x}}{\frac{3x + 1}{x}} = \lim_{x \to \infty} \frac{2x + \frac{5}{x}}{3 + \frac{1}{x}} = \infty$$

What about $\lim_{x\to\infty} \frac{2x^2+5}{3x+1}$?

Example:

The following limits do not exist (as real numbers). Write each limit as ∞ or $-\infty$.

a)
$$\lim_{x \to 3^+} \frac{-6}{x-3}$$
 b) $\lim_{x \to 1} \frac{2}{(x-1)^2}$ c) $\lim_{x \to 2^-} \frac{-3}{x-2}$
d) $\lim_{x \to \infty} \frac{x^2-3}{2x-4}$ e) $\lim_{x \to 0} \frac{-1}{x^2(x+1)}$ f)

Solution:

a)

Since for x > 3, (x-3) > 0 and $\lim_{x \to 3^+} (x-3) = 0$ thus

$$\lim_{x\to 3^+}\frac{-6}{x-3}=-\infty$$

3. Horizontal and Vertical Asymptotes

Finding horizontal and vertical asymptotes of the graph of a rational function is quite easy.

Example:

(i). Determine the horizontal asymptote(s) for the graph of each function defined below.

a)
$$f(x) = \frac{2x+1}{x-4}$$
 b) $f(x) = \frac{8x^2 - 1}{1+4x+6x^2}$
(ii) Determine the vertical equation (a) for the proph of each function define

(ii) Determine the vertical asymptote(s) for the graph of each function defined below.

a)
$$f(x) = \frac{-3}{x+2}$$
 b) $f(x) = \frac{2}{1-x}$ c) $f(x) = \frac{1}{x^2 - 5x + 4}$

Solution:

(i) a)
$$f(x) = \frac{2x+1}{x-4}$$

 $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x+1}{x-4} = \dots = 2$

Thus the horizontal asymptote is y = 2.

- (ii) For vertical asymptote: consider $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f(x)$
- a) $f(x) = \frac{-3}{x+2}$ $\lim_{x \to -2^{-}} \frac{-3}{x+2} = \infty \text{ or } -\infty ??? \qquad \lim_{x \to -2^{+}} \frac{-3}{x+2} = \infty \text{ or } -\infty ???$

Since $f(x) \to \infty$ as $x \to -2^-$ [or $f(x) \to -\infty$ as $x \to -2^+$], the vertical asymptote is x = -2.

(nby, Nov 2015)